Explore the crucial role of amino acids in enhancing post-exercise recovery. From Creatine, glutamine to l-carnitine, discover how these nutritional components can support your fitness journey and optimize your performance.
Amino acids play a vital role in optimizing post-exercise recovery. These building blocks of protein are instrumental in repairing and rebuilding muscle tissue stressed during exercise.Amino acids like glutamine aid in immune system function and tissue repair, helping to alleviate muscle soreness. L-carnitine, another amino acid derivative, enhances fatty acid oxidation and reduces oxidative stress, contributing to improved muscle recovery. Overall, amino acids are indispensable in promoting efficient recovery, reducing muscle damage, and enhancing exercise performance. Creatine, an amino acid found in skeletal muscle, plays a crucial role in energy production during short bursts of high-intensity exercise. When taken in a daily dose of about 20 grams of creatine monohydrate (Cr) for at least two days, it can increase muscle phosphocreatine (PCr) levels by up to 50%, resulting in various performance benefits like increased power, strength, aerobic and anaerobic capacity, and muscle mass.Creatine has also been considered as a recovery aid, especially in scenarios involving significant muscle damage. It is thought to impact recovery processes such as protein synthesis, muscle membrane stabilization, calcium regulation, glucose storage, antioxidant activity, and modulation of post-exercise inflammation. Consequently, Cr supplementation has been linked to improved muscle glycogen levels after exhaustive cycling and reduced blood markers of muscle damage following events like ironman triathlons and long-distance running races.However, its effects on recovery from resistance-based exercise have been mixed, with some studies showing reduced muscle soreness, improved muscle force recovery, and less muscle damage with Cr supplementation, while others found no significant benefits. The response to Cr supplementation can vary between individuals, with some being responders and others not. Generally, for responders, a dose of around 20 grams per day for about 8-10 days, spanning both pre- and post-exercise periods, seems effective in reducing exercise-induced muscle damage and enhancing recovery. However, an extended supplementation protocol over several weeks might be necessary for some individuals. L-Glutamine, an amino acid abundant in muscle and plasma, plays vital roles in various cellular functions and immune response regulation. During strenuous exercise, glutamine levels can decrease, potentially affecting immune function and post-exercise recovery. L-Glutamine supplementation has been explored as a means to restore glutamine balance and improve recovery. Some studies have shown reduced muscle soreness and enhanced muscle force recovery in untrained individuals following multi-day glutamine supplementation. However, the effectiveness of glutamine supplementation may vary depending on factors like gender and dosage. Further research, especially in trained athletes, is needed to fully understand its impact on post-exercise recovery. L-Carnitine, primarily stored in muscle tissues, is crucial for fatty acid oxidation and reducing oxidative stress. Dietary intake or supplementation is necessary since the body's endogenous production may not suffice, especially during stressful conditions like exercise. L-Carnitine supplementation, typically in the form of LCLT, has shown promise in reducing muscle soreness and markers of muscle damage when taken for 2-5 weeks before exercise. It can be particularly beneficial for non-meat eaters and females experiencing decreased serum carnitine levels, potentially enhancing exercise performance and recovery. The effective dose is around 2 g/kg BW/day for the specified duration.
Stay engaged for additional insights and hands-on recommendations regarding the utilization of smart nutrition to reach your peak performance.
Credits
O’Connor, E.; Mündel, T.; Barnes, M.J. Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022, 14, 5069. https://doi.org/10.3390/nu14235069
Harris, R.C.; Söderlund, K.; Hultman, E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin. Sci. 1992, 83, 367–374.
Rossouw, F.; Krüger, P.; Rossouw, J. The effect of creatine monohydrate loading on maximal intermittent exercise and sport-specific strength in well trained power-lifters. Nutr. Res. 2000, 20, 505–514.
Becque, M.D.; Lochmann, J.D.; Melrose, D.R. Effects of oral creatine supplementation on muscular strength and body compositioin. Med. Sci. Sports Exerc. 2000, 32, 654–658.
Chwalbiñska-Moneta, J. Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 173–183.
Jacobs, I.; Bleue, S.; Goodman, J. Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Can. J. Appl. Physiol. 1997, 22, 231–243.
Jiaming, Y.; Rahimi, M.H. Creatine supplementation effect on recovery following exercise-induced muscle damage: A systematic review and meta-analysis of randomized controlled trials. J. Food Biochem. 2021, 45, e13916.
Izquierdo, M.; Ibanez, J.; González-Badillo, J.J.; Gorostiaga, E.M. Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med. Sci. Sports Exerc. 2002, 34, 332–343.
Mujika, I.; Padilla, S.; Ibanez, J.; Izquierdo, M.; Gorostiaga, E. Creatine supplementation and sprint performance in soccer players. Med. Sci. Sports Exerc. 2000, 32, 518–525.
Dawson, B.; Cutler, M.; Moody, A.; Lawrence, S.; Goodman, C.; Randall, N. Effects of oral creatine loading on single and repeated maximal short sprints. Aust. J. Sci. Med. Sport 1995, 27, 56–61.
Roberts, P.A.; Fox, J.; Peirce, N.; Jones, S.W.; Casey, A.; Greenhaff, P.L. Creatine ingestion augments dietary carbohydrate mediated muscle glycogen supercompensation during the initial 24 h of recovery following prolonged exhaustive exercise in humans. Amino Acids 2016, 48, 1831–1842.
Bassit, R.A.; Pinheiro, C.H.d.J.; Vitzel, K.F.; Sproesser, A.J.; Silveira, L.R.; Curi, R. Effect of short-term creatine supplementation on markers of skeletal muscle damage after strenuous contractile activity. Eur. J. Appl. Physiol. 2010, 108, 945–955.
Santos, R.; Bassit, R.; Caperuto, E.; Rosa, L.C. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30 km race. Life Sci. 2004, 75, 1917–1924.
Willoughby, D.S.; Rosene, J.M. Effects of oral creatine and resistance training on myogenic regulatory factor expression. Med. Sci. Sports Exerc. 2003, 35, 923–929.
Cooke, M.B.; Rybalka, E.; Williams, A.D.; Cribb, P.J.; Hayes, A. Creatine supplementation enhances muscle force recovery after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2009, 6, 13.
Veggi, K.F.; Machado, M.; Koch, A.J.; Santana, S.C.; Oliveira, S.S.; Stec, M.J. Oral creatine supplementation augments the repeated bout effect. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 378–387.
Rawson, E.S.; Conti, M.P.; Miles, M. Creatine supplementation does not reduce muscle damage or enhance recovery from resistance exercise. J. Strength Cond. Res. 2007, 21, 1208–1213.
Boychuk, K.E.; Lanovaz, J.L.; Krentz, J.R.; Lishchynsky, J.T.; Candow, D.G.; Farthing, J.P. Creatine supplementation does not alter neuromuscular recovery after eccentric exercise. Muscle Nerve 2016, 54, 487–495.
McKinnon, N.B.; Graham, M.T.; Tiidus, P.M. Effect of creatine supplementation on muscle damage and repair following eccentrically-induced damage to the elbow flexor muscles. J. Sports Sci. Med. 2012, 11, 653.
Rosene, J.; Matthews, T.; Ryan, C.; Belmore, K.; Bergsten, A.; Blaisdell, J.; Gaylord, J.; Love, R.; Marrone, M.; Ward, K. Short and longer-term effects of creatine supplementation on exercise induced muscle damage. J. Sports Sci. Med. 2009, 8, 89.
Legault, Z.; Bagnall, N.; Kimmerly, D.S. The influence of oral L-glutamine supplementation on muscle strength recovery and soreness following unilateral knee extension eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 417–426.
Street, B.; Byrne, C.; Eston, R. Glutamine supplementation in recovery from eccentric exercise attenuates strength loss and muscle soreness. J. Exerc. Sci. Fit. 2011, 9, 116–122.
Nakhostin-Roohi, B.; Javanamani, R.; Zardoost, N.; Ramazanzadeh, R. Influence of glutamine supplementation on muscle damage and oxidative stress indices following 14 km running. Hormozgan Med. J. 2017, 20, 287–294.
Nia, F.R.; Farzaneh, E.; Damirchi, A.; Majlan, A.S. Effect of L-glutamine supplementation on electromyographic activity of the quadriceps muscle injured by eccentric exercise. Iran. J. Basic Med. Sci. 2013, 16, 808.
Castell, L.M. Glutamine supplementation in vitro and in vivo, in exercise and in immunodepression. Sports Med. 2003, 33, 323–345.
Kuhn, K.S.; Muscaritoli, M.; Wischmeyer, P.; Stehle, P. Glutamine as indispensable nutrient in oncology: Experimental and clinical evidence. Eur. J. Nutr. 2010, 49, 197–210.
Stefan, M.; Sharp, M.; Gheith, R.; Lowery, R.; Ottinger, C.; Wilson, J.; Durkee, S.; Bellamine, A. L-Carnitine Tartrate Supplementation for 5 Weeks Improves Exercise Recovery in Men and Women: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 3432.
Fielding, R.; Riede, L.; Lugo, J.P.; Bellamine, A. L-carnitine supplementation in recovery after exercise. Nutrients 2018, 10, 349.
Eder, K.; Felgner, J.; Becker, K.; Kluge, H. Free and total carnitine concentrations in pig plasma after oral ingestion of various L-carnitine compounds. Int. J. Vitam. Nutr. Res. 2005, 75, 3–9.
Spiering, B.A.; Kraemer, W.J.; Vingren, J.L.; Hatfield, D.L. Responses of criterion variables to different supplemental doses of L-carnitine L-tartrate. J. Strength Cond. Res. 2007, 21, 259.
Ho, J.-Y.; Kraemer, W.J.; Volek, J.S.; Fragala, M.S.; Thomas, G.A.; Dunn-Lewis, C.; Coday, M.; Häkkinen, K.; Maresh, C.M. l-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. Metabolism 2010, 59, 1190–1199.
Volek, J.S.; Kraemer, W.J.; Rubin, M.R.; Gómez, A.L.; Ratamess, N.A.; Gaynor, P. L-Carnitine L-tartrate supplementation favorably affects markers of recovery from exercise stress. Am. J. Physiol.-Endocrinol. Metab. 2002, 282, E474–E482.
Parandak, K.; Arazi, H.; Khoshkhahesh, F.; Nakhostin-Roohi, B. The effect of two-week L-carnitine supplementation on exercise-induced oxidative stress and muscle damage. Asian J. Sports Med. 2014, 5, 123.
Spiering, B.A.; Kraemer, W.J.; Hatfield, D.L.; Vingren, J.L.; Fragala, M.S.; Ho, J.-Y.; Thomas, G.A.; Häkkinen, K.; Volek, J.S. Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise. J. Strength Cond. Res. 2008, 22, 1130–1135.
Image credits: https://www.freepik.com/free-photo/my-preparing-active-day_11983381.htm#query=fitness%20muscle%20protein%20free&position=1&from_view=search&track=ais